
UKIEPC 2016
Post-Contest Presentation
rgl@google.com

UKIEPC Numbers

2013: 52 teams; 5 sites
2014: 61 teams; 9 sites
2015: 142 teams; 12 sites
2016: 171 teams; 13 sites

First correct submission: 00:03:36 – Grass Seed Inc, IRL (Cambridge)
Last correct submission: 04:59:23 – Fridge, @ tvoj otec (Southampton)
Number of submissions: 1433

506 lines of code to solve the whole set.

UKIEPC Names

Organisers: Max Wilson, James Davenport, Rachid Hourizi

Writers: Robin Lee, Jim Grimmett, James Stanley

Reviewers: Ximo Lerma, Per Austrin

Sysadmins: Neil Francis, Matt Richards, Rob Perkins

Illustrator: Lisa Abose

Fun Facts

We restarted the domjudge server 3 times during this contest

We had 2 judgehosts fail after the 3rd restart (but we brought them back!)

We threw away 1 question a week before the contest

Problem Solutions

A - Taxing
30 correct • solved at: 00:35 by

Just To Fail One More Time (Taras Shevchenko)

Author: Jim

Overview
● A number of tax bands, each with a

certain tax percentage.

● A number of friends with earnings and
net present size.

● Determine the gross present size for
each friend.

Taxing Problem - Solution
Techniques

● Geometric series
● Binary search

Algorithm

● For each friend, ‘fill-up’ tax bands one-by-one.

● Start filling up the first tax band with any space left.
○ If the gift will not fit in this first band, work out the tax on this

part of the gift and move onto the next tax band.

○ If the gift does fit, calculate tax, and tax on tax, etc. If that
total would leave us in the same band, we are done.

○ If not, work out what portion of the tax will overlap, move to
the next band and repeat.

B - Build a Boat
1 correct • solved at: 04:34 by

Catz CS Society (Oxford)

Author: Robin

Overview
● Given a polygon with edges going

strictly left-right (a monotone polygon)

● Partition the polygon into as many equal
slices as possible, above a minimum
size

Build a Boat - Solution
Techniques

● Polygon area
● Integration
● Binary search

Algorithm

● Create a function that takes a width, crops the polygon vertices to
that width, and calculates its area, eg. with cross-products:
○ total_area = sum(vertex[i] x vertex[i+1]) / 2

● Precompute the function for every “interesting” width (X
coordinates of vertices) and interpolate in between

● Work out segment sizes from total area:
○ segment_area = total_area / floor(total_area / min_area)

● Run binary search repeatedly to find the segment positions, given
the areas they need to occupy

C - Compiler
4 correct • solved at: 02:36 by

Catz CS Society (Oxford)

Author: Robin

Overview
● A simple processor supplied with limited

instructions, three registers, and a small
stack.

● No program can be longer than 40
instructions.

● Write a program that will write the
assembly language to output a number
between 0 and 255

Compiler - Solution
Techniques

● Dynamic programming
● Shortest paths

Algorithm

● 3 registers and 256 bytes of stack is overkill. All we need is:
○ 2 registers
○ 1 item on the stack

● Let state={X,Y,Stack1} --- that’s 2573 = 16,974,593 choices
○ Breadth-first search over all possible CPU states

■ Worst case: 38 instructions

● Another approach from Per
○ Factorise one register recursively via (PH S)*T, AD*(x-1), PL

■ Worst case: 40 instructions

D - Darkness
Not solved

Author: Jim

Overview
● Wall off badly lit areas of a nightclub

● You may also wall off well-lit areas, but
this comes at a hefty price

Darkness - Solution
Techniques Algorithm

● Find the cheapest way of cutting off the “inside” from the “outside”
○ £11 to remove an edge between adjacent cells
○ £43 if the cells were both lit

● First, find which cells are above the threshold
○ One big loop is fine

● Next, add edges between cells for fence costs
○ And infinite edges from Source for boundary cells
○ And infinite edges to Sink for unlit cells

● Solve with your favourite maxflow algorithm

● Minimum cut
● Maximum flow
● Fractions

Overview
● A map of a car showroom with doors,

cars and walls.

● There can be many doors in the outer
wall leading to the target.

● Given the coordinates of a car in the
showroom, how many cars must be
moved in total.

E - Showroom
48 correct • solved at: 00:19 by

Me[∰]tallica (Cambridge)

Author: Jim

Elegant Showroom - Solution
Techniques
● Dijkstra’s algorithm
● Breadth-first search

Algorithm
● Read in the ‘map’ of the showroom and build a graph. Make a note

of the doors on the edges.

● Use Dijkstra’s algorithm to find the distance to the target car.
○ Weight each node. 1 for a car, 0 for a door.
○ Push all of the edge doors onto a priority queue at once,

distance 0
○ Starting a new search from each door is slow.

■ About 1,500 times slower, in fact.

● See also: Sokoban for a harder challenge with the same idea

F - Fridge
114 correct • solved at: 00:12 by

Charles University in Prague

Author: Robin

Overview
● A single string of up to 1000 digits [0-9].

● Print the smallest positive integer that
cannot be made without reusing any of
those digits.

● Example:
○ 01123456789 → 22

Fridge - Solution
Techniques

● Counting
● Strings

Algorithm

● Find the digit with the fewest occurrences
○ The answer will be the digit repeated * (occurrences + 1)

● But in the case of zero, the answer has to be positive
○ So prepend a “1” as well

● Done!
○ Note: “up to 1000 digits” is a little too much to read into an

unsigned long
■ And also slightly too large for iterating over all

possibilities to work

 100...000
 111...111
 222...222
 333...333
444...444
 555...666
 777...777
 888...888
 999...999

G - Gondola
Not solved

Author: Robin

Overview
● People arrive at a mountain foot at

certain times
○ They would like to get on their

gondolas quickly

● You have a limited number of gondolas
and must place them on the rotating
track

● Minimise the sum of all waiting times

Gondola - Solution
Techniques

● Modular arithmetic
● Dynamic programming
● Convex hull trick

Algorithm

● First observations:
○ Arriving at time X is equivalent to arriving at time X+2×T
○ Gondolas should always coincide with someone arriving

● Assume we put the first gondola at X=2xT so cost=sum(arrivals)
○ We can add another gondola at time Y<X

■ This saves (X-Y) × count(arrival[i] <= Y)
■ And now we have a smaller instance
■ Dynamic programming takes O(N^3)

● Or O(N2) by using convexity properties

● One wrinkle: 2xT may not be the best place to put a gondola
○ So wrap the array around and try other end times

H - Rhyming Slang
93 correct • solved at: 00:17 by
ill_overflow_ur_NaN_m8 (Trinity College Dublin)

Author: Jim

Overview
● Read a number of lists of word endings.

If two endings are in the same list words
with those endings rhyme.

● Read a single common word and a
number of possible phrases that could
be rhyming slang for the common word.

● Output YES if the word and phrase
rhyme, NO otherwise.

Rhyming Slang - Solution
Techniques

● Substrings
● Hashmaps

Algorithm

● Read in all of the endings and the common word.
○ We only care about rhyming sets where the common word

matches at least one ending in the list.

● Put the set of possible rhymes into a hash set.

● For each possible rhyming phrase iterate over all possible suffix
lengths for the end word.
○ Look them up in the hash set.
○ If any exist in there (possibly more than 1), write YES.

I - Grass Seed
161 correct • solved at: 00:03 by

IRL (Cambridge)

Author: Jim

Overview
● Given:

○ The cost of seed for one square
metre of lawn

○ Several lawn widths and lengths

● Calculate the total cost of seed.

Grass Seed - Solution
Techniques

● Floating point
● Multiplication

Algorithm

● For each lawn:
○ Read in width and height
○ Multiply to find the area

● Sum the lawn areas.

● Multiply the sum by the cost of the seed.
○ Print back out with %.6f, %.7f, etc.

J - Jack’s Beanbag
16 correct • solved at: 02:10 by
KTU United (Kaunas University of Technology)

Author: Robin

Overview

● N farmers each have a set, X
○ When asked, they will yield one item
○ But you can’t pick which one

● You want a certain number of each kind
of bean

● After utilising the farmers’ supplies, how
many more beans will you need to barter
for?

Jack and the Beanbag - Solution
Techniques

● Brute force
● Combinations
● Set cover

● Each farmer will give the full amount of at least one kind of bean.
○ Proof by induction: either you already had enough, or getting

another bean brings Jack one step closer.

● The worst case is when farmers collude:
○ Each picks a kind of bean to always give and puts it in set S
○ Cost = sum(beans \ S)

● There are at most 2B such sets---generate all of them, check if each
makes a valid farmer selection, and take the smallest.
○ This is known as the set cover problem
○ Complexity: O(2B × N)

Algorithm

K - Compensation
2 correct • solved at: 02:10 by

Charles University in Prague

Author: Robin

Overview
● Trains are scheduled at times X, Y

● But they are delayed, so actual
departure/arrival times are X+C, Y+C

● What is the earliest train journey we can
book so we are “delayed” by more than
1800 seconds?

Compensation - Solution
Techniques

● Dynamic programming
● Shortest paths
● Graphs

Algorithm

● Make two separate graphs, one “regular” version and one “delayed”
version

● For every start train in the “regular” graph, find the shortest path
provided we board exactly that train
○ (note: we booked it, so even if there’s a faster way, we must

take the train we were scheduled to)
■ This caused a big sea of WRONG-ANSWER.

○ Cache and reuse repeated answers for {station,time}

● Another fun fact: we found a wrong judge solution halfway
through. Luckily it was not the one we use for validating test data.

L - Secret Santa
61 correct • solved at: 00:11 by

IRL(Cambridge)

Author: James

Overview

● We have N people in a town.
○ Each person picks up a unique

name from the set, on a piece of
paper

● What are the chances that someone
(maybe several people) picked up their
own name?

● Dynamic programming
● Permutations
● Infinite series

Secret Santa - Solution
Techniques Algorithm

● Count the number of permutations with no fixed points
○ (also known as derangements)

● With N people, whoever person 1 gives a gift to may:
○ Give a gift in return

■ In which case answer[N] += answer[N-2] * (N-1)
○ Give a gift to someone else

■ In which case answer[N] += answer[N-1] * (N-1)

● Dynamic programming gives a fast solution for small N
● But N <= 10^12

○ Handily, the answer quickly converges to 1-(1/e)
○ After 8 in fact---so brute force works too

Questions?
Or comments?

http://domjudge.bath.ac.uk/
Final Standings

http://domjudge.bath.ac.uk/

